CONSTRAIN IS SPLIT INTO SIX WORK PACKAGES:

Three work packages (WPs1, 2 and 3) target the main science Knowledge Gaps (A-C).

WP4 uses the scientific outputs from WP1-3 to develop climate emulators and make recommendations for how to treat uncertainty in climate projections over the next 20-50 years. WP4 also feeds CONSTRAIN work into the IPCC 6th Assessment Report (AR6).

WP5 addresses the gap in knowledge translation (Knowledge Gap D), disseminating and communicating results, including the climate emulators, to key stakeholders.

Finally, a management and coordination work package (WP6) focuses on project delivery and broader internal and external communication.

Explore the work packages below, and see the outputs (deliverables) that we will be making available on this website.

WP1: Effective radiative forcing and rapid adjustments

Lead Partners: CICERO, Universität Leipzig

WP1 looks at why climate model simulations of effective radiative forcing (ERF) differ, and aims to quantify errors in the models. This is important for constraining climate sensitivity.  There will be a focus on aerosol-cloud interactions and rapid adjustment mechanisms in order to understand both the processes and their uncertainties, and to make major improvements in model estimates of ERF as a result.

WP1 public deliverables

D1.1 March 2020

Download

Knowledge Gains: Summary and Implication Report on improved characterisation and understanding of the effective radiative forcing (ERF) concept

D1.4 March 2020

Download

Knowledge Gains: Summary and Implication Report on state-of-the-art understanding of rapid adjustments

D1.2 June 2021

Short report from workshop on aerosol-cloud interactions

D1.3 June 2023

Knowledge Gains: Summary and Implication Report on ERF

D1.5 June 2022

Short report from workshop on rapid adjustments

D1.6 June 2023

Knowledge Gains: Summary and Implication Report on rapid adjustment processes and constraint of ERF from spatiotemporal patterns

WP2: Clouds, circulation and climate sensitivity

Lead Partners: CNRS, Max Planck Institute for Meteorology

WP2 investigates key knowledge gaps relating to clouds, circulation and climate sensitivity:

Tropical low-cloud feedbacks will be reassessed using observations from dedicated field studies and associated modelling activities.

Influences on the response of circulation systems to warming will be tested, with a focus on the tropical and North Atlantic and neighbouring land areas, e.g. the Caribbean and Europe.

WP2 public deliverables

D2.2 March 2021

Short report from workshop on characterizing mesoscale organisation of shallow convection

D2.4 June 2023

Knowledge Gains: Summary and Implication Report on improved physical understanding and quantification of tropical low-cloud feedbacks

D2.7 June 2023

Knowledge Gains: Summary and Implications Report on robust circulation responses to climate change in the tropical Atlantic sector and in the mid-latitude European sector

WP3: Ocean-atmosphere coupling and climate projections

Lead partners: University of Leeds, Météo-France

WP3 addresses three key knowledge gaps relating to ocean-atmosphere interactions:

The processes governing patterns of Sea Surface Temperature (SST) change on decadal to multi-decadal timescales and whether these can be constrained.

The impacts of time-varying SST patterns on climate feedbacks and atmospheric circulation.

Controls on the uptake of heat and carbon by the oceans on decadal to multi-decadal timescales.

There is a particular focus on the Pacific Ocean – the key pacemaker for decadal and multi-decadal climate variability – and the Southern Ocean – a major carbon sink and a region of rapid recent change.

WP3 public deliverables

D3.2 June 2023

Knowledge Gains: Summary and Implication Report on interaction of ocean heat uptake and radiative feedback change via SST-pattern change

D3.3 June 2023

Knowledge Gains: Summary and Implication Report on the role of the ocean in setting the transient climate sensitivity

WP4: Cross-cutting physical science synthesis

Lead partners: CNRS, University of Leeds

WP4 brings together knowledge on climate sensitivity and global and regional projections from across the project, building understanding of variations in climate feedbacks and how these affect climate projections on different timescales. WP4 also interfaces with the IPCC 6th Assessment Report (AR6).

WP4 will also develop two simple climate emulators that capture the behaviour of complex Earth system models for a limited set of variables, but at a much lower computational cost, enabling detailed exploration of both uncertainties and emissions pathways. These tools will translate complex insights from WPs 1-3 into policy-relevant information, to be used by WP5 making assessments of climate change mitigation, impacts and adaptation.

WP4 public deliverables

D4.1 February 2021

Knowledge Gains: Summary and Implication Report on CONSTRAIN publications and overall contribution to IPCC AR6

D4.3 June 2021

Short report from workshop on approaches to constraining climate sensitivity and new insights

D4.8 December 2022

Knowledge Gains: Summary and Implication Report on new understanding of climate sensitivity and its role in projections

D4.10 December 2021

Online GitHub Code documenting the improvements made to the climate emulators regarding their use of climate patterns for climate impact and feedbacks

D4.11 June 2022

Full documentation of improved emulators (technical report or a model presentation)

D4.12 June 2022

Knowledge Gains: Summary and Implication Report on assessing the skill of climate emulators

WP5: Translation to policy and dissemination

Lead Partners: Imperial College London, Climate Analytics

WP5 will translate and applying insights from CONSTRAIN research into policy-relevant information, to support decision making and climate action, linking to key stakeholders. There are two main science-to-policy analysis and translation activities:

Improving the assessment of near-term climate projections.

Updating remaining carbon budget estimates in light of different regional forcing and carbon-cycle feedbacks, plus exploration of the limitations of the carbon budget concept.

WP5 will also ensure that complex yet important insights from all WPs are communicated to key stakeholders, including through the annual CONSTRAIN report series, which will also provide valuable input into the UNFCCC 2023 Global Stocktake.

WP5 public deliverables

D5.1 October 2020

Emissions pathway tool published online

D5.2 June 2022

Knowledge Gains: Summary and Implication Report aimed at adaptation planners with infographics on robustness of 20-30 year projections

D5.3 June 2023

Knowledge Gains: Summary and Implication Report on carbon budget estimates with latest insights on forcing, variability and feedbacks

D5.6 January 2020

First Annual CONSTRAIN Report on remaining carbon budgets and near term warming rates

DOWNLOAD

D5.7 December 2020

Second Annual CONSTRAIN Report on adaptation and mitigation choices

D5.8 December 2021

Third Annual CONSTRAIN Report on adaptation and mitigation choices

D5.9 December 2022         

Fourth Annual CONSTRAIN Report on adaptation and mitigation choices

D5.10 February 2023

Final CONSTRAIN summary input into the UNFCCC Global Stocktake

D5.11 June 2023

Stakeholder driven and bespoke communication tools for general audience (e.g. graphic novel) on near term climate change

D5.12 June 2023

Online interactive infographics created such as the Climate Action Tracker, but targeting both adaptation and mitigation decisions

WP6: Project management and coordination

Lead Partner: University of Leeds

WP6 is responsible for managing the project’s administrative, financial and contractual needs, and is the main point of contact for the European Commission.

WP6 also supports the CONSTRAIN consortium more broadly, through for example meeting organisation, training provision, maintaining links with other EU projects and external partners, and keeping the project website and intranet up to date with scientific output from all WPs.

It also plays a key role in external communications, ensuring that CONSTRAIN science is distributed as widely as possible in a user friendly way, through for example blogs, opinion pieces and outreach material.